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Chiral molecules are ubiquitous in nature, however, chiral solids
with extended three-dimensional (3-D) framework are far less
common. Thea-quartz, a crystalline polymorph of silica, is an
important chiral mineral with a 4-connected net. The topology of
o-quartz or its high temperature formi-Quartz), is also found in
some other ABQ@ oxides such as berlinite (AIRp Despite the
widespread occurrence of-quartz, its topological type is rarely
found in other 3-D frameworks even though recent studies in
coordination polymers have resulted in some rare examples of the
interpenetratingquartz-type framework such as ZnAGN), with
6-fold interpenetratiof. Figure 1. (Left) The first member of pentasupertetrahedral clusters, P1;

Chiral framework solids such as quartz have attracted increasing (right) the first member of capped supertetrahedral clusters, C1: gre&n, Cd
attention because of their potential applications in enantioselective yellow, S. Organic surface ligands are not shown.
processes (catalysis, separation, sensing, etc.). Quartz is of particular
interest because of its intriguing helical structure and its techno- _ _
logical applications related to its unique piezoelectric property. [Cd17S4(SCeHaMe-4)d*", and [Cd7Sy(SCHaMe-3)q*, are re-

- : . " ported here. They differ in the type of surface ligand or the cluster
Quartg has 6%'50 been. shown to exhibit enar)thsellectlve a.ldsorptlonsize. The [C#S(SGHsMe-3),¢]2~ cluster (denoted P1 cluster) found
of amino acids, but its low surface area limits its applicafion.

Therefore. the creation of other chiral 3-D fram 'k material in CMF-1, -3, and -5 is the first member of a series of tetrahedral
heretore, the creafion of other chiral 5L framewo alenals  clusters termed pentasupertetrahedral clusters (tlsefes) One
with the helical quartz-type topology is of great interest.

Cadmium chalcogenide clusters are of current interest becausekey structural feature of the P1 cluster is the presence of a core
of their significance ?n nanotechnology and metallothioneins-based CdS anti-tetrahedron covered by four outer GeSular tetrahedra

. rsig c 9y . (Figure 1). P1 clusters are also known in other compositions,
biological processes® The recent work on semiconductor frame-

particularly 1-1V (e.g., Zn—Sn) chalcogenides with no surface
works constructed from C&S—SAr (or Cd—SAr) clusters tends ) 10-11 Ay o y )
to give nonchiral frameworkr frameworks with clusters no larger ligands:” *The [Cd S(SCHMe-4)dl* in CMF-2and [CdS(SCety

: L Me-3)g]?~ in CMF-3 (both denoted C1 cluster) are the first member
2— 7
::atn clid\SvStAhr)lﬁ I'i Vl\/e Tfave n?nv;Ide\]/‘edlic;fperdnstyr}tzh%nchccl)ndltlonr;; of a series of tetrahedral clusters termed capped supertetrahedral
la ta ov i € te t(\:/\?' SZ ;]asl_sel hy_o he € t-s' f. cf?hcoge te clusters (the @series) One key structural feature of the C1 cluster
clusters info intertwined hetical chains characlenstic ot the quartz= o, presence of a core Cgi®trahedron sharing its S sites with
type net. In addition, the moganite topology that is closely related

g . . f | i Fi 1).
to the quartz-type has also been synthesized in this work. Such our corner CasS, barrelanoid cages (Figure 1)

helical self mblv of chal nide clusters is unorecedented and Topologically, P1 and C1 clusters behave like large artificial
elical sefl-assembly of chalcogenide CIUSIETS IS unprecedented andy, ¢ \yith tetrahedral coordination. They can occupy tetrahedral
represents a key advance in the development of novel framework

. . nodes in 4-connected nets, forming so-called decorated networks.
materials from chalcogenide clusters.

. : ) . . Two adjacent clusters are covalently joined through the SAr—
This work is part of our systematic studies on the synthesis of ! yl g

Cd—S—SAr clusters and their superlattices. One focus of this Cd linkage. CMF-1, -2, and -5 all have tfgquartz topology.

research is to examine how key synthetic parameters such asCMF_:L and -5 contain P1 clusters, [({SGH.Me-3)e|? , while
. CMF-2 contains larger C1 clusters, SGHsMe-4)¢)2~. Prior
temperature, solvent, surface ligand typeAf), and S~ sources : g u [GE(SCeH el !

affect the size and network topology of resulting chalcogenide to this work, P1 and C1 clusters formed either isolated clugtéfs
materials. New helical superlattices denoted as GMEMF = or the diamond-type framewofRIn fact, the quartz-type topology

capped metal-chalcogenide frameworks) were synthesized at roorr{?_as not been found in any chalcogenide with or without clusters.
R . hus the realization of the chiral quartz-type topology in chalco-
temperature or under solvothermal conditions at°8% CMF-1 d ype topology

W btained lor] rvstals by slow diffusion of methan Igenides as reported here is unprecedented.The main structural
was obtained as coloriess crystais by slo usion of methanol e ence between CMF-1 and CMF-5 is that CMF-5 has a 6-fold
into the yellowish solution (mass ratio, DMF:&S 2:1) containing

Cd(SGHaMe-3), (HSCsHaMe-3 — 3-methylbenzenethiol) in-46 supercell with ordered®s sites between two adjacent clusters. The

difference between CMF-1 and CMF-5 is further verified by
weeks. Here, CSalso serves as the’Ssource. CMF-2, -3, and -5 multiple crystallographic refinements for CMF-1 and CMF-5 in
were synthesized under solvothermal conditions with thiourea as

. L i I d subcells, tively.
the S~ source. The starting material is Cd($GMe-4), (HSCGsH.- various Supercetis and Subcers, respectively

. One interesting feature in CMF-3 is the presence of both P1 and
Me-4 = 4-methylbenzenethiol) for CMF-2 and Cd(§GMe-3), . Lo .
for CME-3 and CME-5. C1 clusters in the moganite-type net (Figure 2). So far there have

been no prior examples of 3-D frameworks with mixed clusters
t University of California. from both  and Gh series. Moganite is a rare polymorph of silica
* California State University. that integrates both left- and right-handed features of the quartz

Three previously unknown clusters, [£3{SGHiMe-3)¢%,
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COMMUNICATIONS

Table 1. A Summary of Crystallographic Data?

cluster chemical topology space
name type composition type group a(h) b(A) c(A) R(F) 26 max
CMF-1 P1 CdS(SGHMe-3)s B-quartz P6,22  19.7205(3) 19.7205(3)  22.9816(4) 6.10 84.2
CMF-2 c1 Cd7Sy(SCsHaMe-4)6 B-quartz P6,22 27.919(2) 27.919(2) 30.995(5) 152 308
CMF-3 P1 and [CdsS(SGHaMe-3)14]2 moganite C2lc 62.8179(7) 20.1911(2) 41.4214(5) 7.41 £1.8
C1 [Cdi7Su(SCHsMe-3)e]
CMF-5 P1 CdS(SGHaMe-3)4 B-quartz P6,22 34.1978(3) 34.1978(3) 45.9516(5) 4.44 56.9

a X-ray data were collected on a Bruker APEX Il diffactometer with Ma Bource at 150 K. The full-matrix refinements were agaftsR(F) = 3 ||Fo|
— |Fell/3 |Fo| with Fo > 4.00(F,). For CMF-3,8 =127.740(1). ® The highR(F) for CMF-2 is in part related to the extensive disorder of surface capping
ligands, which limits the resolution of the diffraction data td §data resolutior= 1.3 A) in 29. However, such data resolution is adequate for resolving
the Cd-S cluster structure with the G distance of about 2.4 A.

to generate porosity in such framework structures. Therefore, this

a o
2T N work raises hope for the synthesis of novel chiral semiconductors
% ""::Jf F that may lead to new enantioselective processes such as sensing.
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